skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ballinger, Thomas J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Today's Arctic is characterized by a lengthening of the sea ice melt season, as well as by fast and at times unseasonal melt events. Such anomalous melt cases have been identified in Pacific and Atlantic Arctic sector sea ice studies. Through observational analyses, we document an unprecedented, concurrent marginal ice zone melt event in the Bering Sea and Labrador Sea in March of 2023. Taken independently, variability in the cold-season ice edge at synoptic timescales is common. However, such anomalous, short-term ice loss over either region during the climatological sea ice maxima is uncommon, and the tandem ice loss that occurred qualifies this as a rare event. The atmospheric setting that supported the unseasonal melt events was preceded by a sudden stratospheric warming event amidst background La Niña conditions that led to positive tropospheric height anomalies across much of the Arctic and the development of anomalous mid-troposphere ridges over the ice loss regions. These large-scale anticyclonic centers funneled extremely warm and moist airstreams onto the ice causing melt. Further analysis identified the presence of atmospheric rivers within these warm airstreams whose characteristics likely contributed to this bi-regional ice melt event. Whether such a confluence of anomalous wintertime events associated with troposphere–stratosphere coupling may occur more often in a warming Arctic remains a research area ripe for further exploration. 
    more » « less
    Free, publicly-accessible full text available December 4, 2025
  2. Abstract. Today’s Arctic is characterized by a lengthening of the sea ice melt season, but also by fast and at times unseasonal melt events. Such anomalous melt cases have been identified in Pacific and Atlantic Arctic sector sea ice studies. Through observational analyses, we document an unprecedented, simultaneous marginal ice zone melt event in the Bering Sea and Labrador Sea in March of 2023. Taken independently, variability in the cold season ice edge at synoptic time scales is common. However, such anomalous, short-term ice loss over either region during the climatological sea ice maxima is uncommon, and the tandem ice loss that occurred qualifies this as a rare event. The atmospheric setting that supported the unseasonal melt events was preceded by a sudden stratospheric warming event that, along with ongoing La Niña teleconnections, led to positive tropospheric height anomalies across much of the Arctic and the development of anomalous mid-troposphere ridges over the ice loss regions. These large-scale anticyclonic centers funneled extremely warm and moist airstreams onto the ice causing melt. Further analysis identified the presence of atmospheric rivers within these warm airstreams whose characteristics likely contributed to this bi-regional ice melt event. Whether such a confluence of anomalous wintertime events associated with troposphere-stratosphere coupling may occur more often in a warming Arctic remains a research area ripe for further exploration. 
    more » « less
  3. Abstract Some of the largest climatic changes in the Arctic have been observed in Alaska and the surrounding marginal seas. Near-surface air temperature (T2m), precipitation ( P ), snowfall, and sea ice changes have been previously documented, often in disparate studies. Here, we provide an updated, long-term trend analysis (1957–2021; n = 65 years) of such parameters in ERA5, NOAA U.S. Climate Gridded Dataset (NClimGrid), NOAA National Centers for Environmental Information (NCEI) Alaska climate division, and composite sea ice products preceding the upcoming Fifth National Climate Assessment (NCA5) and other near-future climate reports. In the past half century, annual T2m has broadly increased across Alaska, and during winter, spring, and autumn on the North Slope and North Panhandle (T2m > 0.50°C decade −1 ). Precipitation has also increased across climate divisions and appears strongly interrelated with temperature–sea ice feedbacks on the North Slope, specifically with increased (decreased) open water (sea ice extent). Snowfall equivalent (SFE) has decreased in autumn and spring, perhaps aligned with a regime transition of snow to rain, while winter SFE has broadly increased across the state. Sea ice decline and melt-season lengthening also have a pronounced signal around Alaska, with the largest trends in these parameters found in the Beaufort Sea. Alaska’s climatic changes are also placed in context against regional and contiguous U.S. air temperature trends and show ∼50% greater warming in Alaska relative to the lower-48 states. Alaska T2m increases also exceed those of any contiguous U.S. subregion, positioning Alaska at the forefront of U.S. climate warming. Significance Statement This study produces an updated, long-term trend analysis (1957–2021) of key Alaska climate parameters, including air temperature, precipitation (including snowfall equivalent), and sea ice, to inform upcoming climate assessment reports, including the Fifth National Climate Assessment (NCA5) scheduled for publication in 2023. Key findings include widespread annual and seasonal warming with increased precipitation across much of the state. Winter snowfall has broadly increased, but spring and autumn snowfalls have decreased as rainfall increased. Autumn warming and precipitation increases over the North Slope, in particular, appear related to decreased sea ice coverage in the Beaufort Sea and Chukchi Seas. These trends may result from interrelated processes that accelerate Alaska climate changes relative to those of the contiguous United States. 
    more » « less